V16 ENGINE
A V16 engine is a V engine with 16 cylinders. Engines of this number of cylinders are uncommon in automotive use.
A V16 engine is perfectly balanced, so long as its constituent straight 8 banks are balanced, regardless of the V angle. That is to say, it does not require contra-rotating balancing shafts which are necessary to balance engines with odd numbers of cylinders in-line or those equipped with counterweighted crankshafts like the 90° V8. In addition V angles of 45° and 135° give an impulse every 45°, so are optimal solutions, for even-firing and non-split bearing crankshaft journals.
V16 engines are rarely used in automobiles because V8s or V12s of the same displacement typically produce just as much power, and are much less expensive to manufacture and maintain. The few V16s that have been produced were used in high-end luxury and high-performance automobiles due to their smoothness (low vibration).
Today, the most common applications for V16 engines are railroad locomotives, marine craft, and stationary power generators.
Harry Miller installed a custom-built V16 that he had built for a Cord "supercar" he had been working on into a chassis that he had built for the 1931 Indianapolis 500 driven by Shorty Cantlon. The car was competitive, charging from 26th on the grid to 3rd, but was slowed by unreliability, further exacerbated by having to change all sixteen spark plugs. Bryan Saulpaugh qualified the car third for the 1932 Indianapolis 500, but the car suffered a broken oil line on lap 55 and their race was over. Shortly after the race the V16 was removed and replaced with a conventional Miller four-cylinder. The car was re-assembled and rebuilt with an exact replica V16 in 1993.[2]
The V16 was used in Grand Prix by the mid-engined Auto Union racing cars that rivalled the Mercedes from 1933 to 1938.
Alfa Romeo made two cars with V16 engine the Tipo 162 (135° V16) and Tipo 316 (60° V16). The first one was prototype and the 316 was used on 1938 Tripoli Grand Prix. The 135° engine was engineered by Wifredo Ricart and gave 490 bhp (370 kW) at 7800 rpm, specific output was said to be 164 bhp (122 kW) per litre.[3]
It has only been used once in the post-World War II era, by British Racing Motors (BRM). Most unusually, this was a 135° V 1.5 L (90.8 cu in) supercharged engine. It was a failure despite being powerful. Officially, it produced 550 hp (410 kW) but probably delivered around 600 hp (450 kW).[4]
The BRM V16 delivered this power in a narrow, very lofty, RPM range. This made the car difficult to handle (but the sound made by the 16 small cylinders has been described as 'unforgettable'). The problem was caused by the supercharging system adopted. For expediency BRM chose it to be designed by Rolls-Royce, drawing on their experience of centrifugal superchargers for aircraft engines. Centrifugal superchargers are much more efficient than the more conspicuous Roots type, but they deliver high pressure only at high RPM.
if you need to read more click here
if you need to read more click here
THANKS FOR READING
BYE
^_^
AMMAN_JORDAN
BYE
^_^
AMMAN_JORDAN
تعليقات
إرسال تعليق
we will soon reply on your comment